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Abstract—Exascale computing must simultaneously address
both energy efficiency and resilience as power limits impact
scalability and faults are more common. Unfortunately, energy
efficiency and resilience have been traditionally studied in
isolation and optimizing one typically detrimentally impacts
the other. To deliver the promised performance within the
given power budget, exascale computing mandates a deep un-
derstanding of the interplay among energy efficiency, resilience,
and scalability.

In this work, we propose novel methods to analyze and
optimize costs of resilience techniques including checkpoint-
restart and forward recovery for large sparse linear system
solvers. In particular, we present experimental and analytical
methods to analyze and quantify the time and energy costs of
recovery schemes on computer clusters. We further develop
and prototype performance optimization and power manage-
ment strategies to improve energy efficiency. Experimental
results show that recovery schemes incur different time and
energy overheads and optimization techniques significantly
reduce such overheads. This work suggests that resilience
techniques should be adaptively adjusted to a given fault rate,
system size, and power budget.

Index Terms—Resilience; Energy-Efficiency; Forward-
Recovery; HPC

1. Introduction

Power and resilience are two major yet intertwined
challenges in exascale computing. Today’s top Petascale
computers consume over 10 megawatts (MW) of power
and have a mean time between failure (MTBF) in 1-7
days [19]. Future exascale systems are expected to have a
similar power budget of 20 MW [5]. Their MTBF would be
within an hour, due to massive concurrency and unreliability
induced by miniaturizing feature size and ultra low power
technologies [38]. Resilience techniques allow programs to
continue progressing in the presence of failures through
redundancy and recomputing, and thus are indispensable
in exascale computing design and operation. However, re-
silience incurs power and time overhead and exacerbates
the power challenge. Thus, exascale computing mandates
simultaneously addressing scalability, resilience, and energy
efficiency.

Previous studies have mainly focused on improving ei-
ther resilience or energy efficiency, usually at the expense

of one another. Resilience technologies aim to reduce time-
to-solution (TTS) for programs in case of failures without
considering energy requirements. For example, checkpoint-
restart (CR) investigates and balances checkpointing time
and rollback distance [18], and triple modular redundancy
consumes 3× the power to provide error detection and
correction. Algorithm based fault tolerance [25, 13] exploits
partial redundancy, and forward recovery [27, 2] explores
approximations of lost or corrupted data to recover from
faults. Meanwhile, power management technologies — e.g.,
near-threshold voltage — generally increases the cost of
resilience by making computing software and device more
complex and unreliable [4].

Recent work investigates the energy cost of resilience,
but is limited to checkpointing and message logging [31]
and the energy impact of checkpointing frequency [6] and
Dynamic Voltage and Frequency Scaling (DVFS) [32]. More
comprehensive studies are needed to answer multiple promi-
nent research questions: (1) what is the resilience ability
of various recovery mechanisms? (2) what is the power
requirement of resilience and how can power management
help? (3) what are the time and energy costs of resilience?
(4) which recovery mechanism is most energy efficient for a
given workload? (5) how does the resilience cost scale with
system size and decreasing MTBF?

Answering these questions requires deep understanding
of performance, energy efficiency, resilience, and their inter-
play in faulty environments. Different resilience techniques
incur different amounts of time and energy. Moreover, a re-
silience technique responds differently to algorithms, work-
load characteristics, failure rate, hardware, and power allo-
cation. For example, forward recovery for iterative Krylov
solvers approximates lost or corrupted data in multiple
ways [2]. Typically, better approximations take longer time
and more energy to be constructed but allow faster progress
to solution than poor approximations. Quantifying the time
and energy costs accurately is necessary to evaluate the
time-energy tradeoffs and identify the optimal resilience
technique for a given situation.

Analytical models built from fine-grain measurement
data are a promising approach to project time, energy, and
resilience on large-scale systems for multiple reasons. First,
generalized analytical models capture the first-order cost
factors for various resilience techniques. Second, analyt-
ical models can be customized to reflect unique features
of specific techniques. Third, fine-grained measurement of
performance, power and resilience at a thread level and of
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computer components can accurately capture model param-
eters. Fourth, fine-grain models can be used to predict the
effect of power management at the system and component
levels.

In this work, we present a set of analytical models that
describe the energy efficiency, resilience, and performance
of scientific applications under faults. We examine the im-
pact of various fault recovery schemes for iterative linear
solvers and further propose techniques to minimize time
and energy overhead. Based on model parameters we derive
from experiments on a cluster, we parameterize a model and
use weak scaling to project program behavior for large-scale
systems.

We make the following main contributions in this work:

• To the best of our knowledge, this work is the first
of its kind that co-studies performance, scalability,
resilience and energy efficiency of large scale scientific
computing in a faulty environment.

• The proposed analytical models capture the first order
time and energy cost factors for various fault recovery
schemes and are customized to fit specific ones. They
are used to identify the best recovery schemes for given
fault situations.

• The optimization techniques reduce the time and en-
ergy overhead of recovery schemes by 16% for parallel
iterative algorithms.

• The analysis reveals the interplay between power, per-
formance, and resilience on large-scale systems.

2. Motivation

To motivate the need for co-analyzing scalability, re-
silience, and energy, we demonstrate that emerging HPC
systems have frequent failures and require resilient comput-
ing to warrant application progress. We further discuss the
associated time and energy costs, show the power behaviors
of resilience techniques, and explore opportunities for power
management.

2.1. Faults on Emerging HPC Systems

Faults are caused by incorrect states of software or hard-
ware. They are classified into hard and soft faults based on
their impacts. Soft faults, such as bit-flips and silent errors,
cause an erroneous deviation in applications but without an
interruption. Hard faults, such as processor failures and node
failures, cause an application or system to crash [7].

In this work, we focus on both hard and soft faults
in hardware and assume that the software environment is
faultless1. Soft faults are commonly grouped into three cat-
egories [38]: Detected and Corrected Error (DCE), Detected
but Uncorrected Error (DUE), and Silent Data Corruption
(SDC). Hard faults have more categories. Here we select
three common and frequent hard faults at system level [19]:

1. Although we do not consider faults in the software environment, the
software environment is still able to propagate errors generated by hardware
faults.

System-Wide Outage (SWO), Single Node Failure (SNF),
Link and Node Failure (LNF).

Figure 1 indicates that the MTBF of an exascale system
is within an hour if projected from Petascale systems [19].
Here we assume a petascale machine consists of 20K com-
pute nodes built with today’s technology and an exascale
machine consists of 1M compute nodes with 11 nm tech-
nology [5, 38]. We use the same method as in [19, 38] to
estimate MTBF of various fault classifications on a single
node or the whole system. We conservatively assume that
MTBF is only affected by system size and node-level tech-
nology. The actual situation might be worse [11, 38].

Figure 1. Estimated MTBF for exascale systems from petascale systems

2.2. Resilient Computing and Its Impacts

Resilient computing is indispensable at exascale where
MTBF is small — i.e., within hours or minutes. With-
out resilience, most applications will make little forward
progress in computation or return erroneous results. Re-
silient computing requires fault detection and recovery. In
this work, we focus on fault recovery and assume that faults
are detected and confined to a subset of data structures [10].
There are three main recovery approaches for soft and
hard faults: Double Modular Redundancy (RD), Checkpoint-
restart (CR), and Forward-recovery (FW).

All recovery mechanisms incur time and energy over-
head, but differ in the amounts. To illustrate the difference
of their overheads, we use the Conjugate Gradient (CG)
method as an example. CG iteratively solves linear equations
in the form of Ax = b, where the n × n matrix A is
symmetric positive-definite, and column vectors x and b
have n entries. CG terminates when a fixed tolerance or
maximal number of iterations is achieved. When a fault
occurs in process pi, data in its memory is erroneous or
lost, as shown in Figure 2. While the static data A and b
can be restored from persistent storage, the dynamic data x
needs to be recovered via RD, CR, or FW.

Figure 3 shows the time and energy overhead for various
recovery mechanisms for CG to reach the same accuracy.
In this experiment, the matrix A is Andrews from [1],
MTBF is set to 0.1 hours and CR checkpoints x to disks.
The experiments are conducted on a 192-core cluster. We
observe that:

• Each recovery mechanism incurs significant time
and/or energy overhead (at most 2×).
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(a) Fault free (b) Fault occurs in p1

Figure 2. CG with a block-row partition. (a) matrix A, vectors x and b are
partitioned to four processes in a fault-free (FF) environment. (b) When a
fault occurs in process p1, part of x is erroneous or lost.

• FW consumes the least energy among the recovery
mechanisms — i.e., 30% in comparison to 68% and
63% by CR and RD respectively.

• RD does not incur a time overhead but doubles the
energy consumption in comparison to the fault-free
(FF) case.

(a) Accuracy (b) Time and Energy

Figure 3. Accuracy and cost of different recovery mechanisms.

Resilience also changes the power profile of applica-
tions. In a fault-free environment, CG consumes a constant
amount of power over its execution. In a faulty environ-
ment, its power consumption doubles if RD is employed.
However, if CR is employed, the power consumption alter-
nates between the high and low plateaus. The high plateaus
correspond to the normal CG execution phases, and the low
plateaus correspond to phases where checkpoints are written
to disk. Similarly, power consumption drops when FW is
used to generate an approximation of the lost intermediate
results. Such details are presented in the results section.

2.3. The Performance-Energy-Resilience Interplay

The changes in the application’s power profile should
be taken into consideration, especially on systems that are
imposed with power budgets. The additional power required
to provide resilience reduces the power available for com-
putation and thus impacts the application’s performance and
scalability. Meanwhile, the power drops during FW and
CR under utilize the available power and reduce system
throughput.

The above examples show that performance, resilience,
and energy have complex trade-offs in a large-scale system.
Balancing them in exascale computing requires understand-
ing and co-analyzing an application’s scalability, resilience,
and power behaviors. Analytical models are a good approach

to explore such scalable issues. Therefore, we create and
analyze such models in this work.

3. Performance, Energy, and Resilience Co-
Modeling

We focus on three performance metrics for a given
workload w: time-to-solution T , power P , and energy-
to-solution E. T had been the sole measure in parallel
computing until power and energy began to constrain perfor-
mance and scalability [30]. These metrics interact and their
interplay depends on workload characteristics, performance
optimization, and power and energy saving technologies.

Each of the metrics is altered by faults and the resilience
techniques employed to tolerate faults. Faults, if occurring
frequently, can have a dominating effect in large scale
computing. In this work, we analytically model the impact
of faults and evaluate the inherent time and energy costs of
different resilience techniques.

We use CG as a case of study and examine workload
properties commonly in parallel computing. Particularly,
we focus on sparse banded matrices. We investigate weak
scaling to project the performance and costs for large-
scale systems. Specifically, we adopt the fixed time scaling
approach [37], i.e., the execution time is constant for scaled
workloads if parallel overhead is negligible. In our context,
the number of non-zero entries and number of degrees-of-
freedom per process remains constant.

3.1. Generalized Models

We first present general models to capture the time,
power, and energy costs of all resilience techniques under
study. The metrics and parameters are presented in Table 1.

TABLE 1. METRICS AND MODEL PARAMETERS.

Symbol Description

Metric
T Time to solution
P Power consumption
E Energy to solution

Workload
w Original workload
w′ Scaled workload (fixed time)

Parameter
λ Failure rate
N Number of cores

Time-to-solution for the original workload T1(w): the
amount of time to complete workload w sequentially on a
single core. We denote this time as Tsolve:

T1(w) = Tsolve (1)

Time-to-solution for the scaled workload TN (w′): the
amount of time to complete a scaled workload w′ on a
system with N ≥ 1 CPU cores. Equation 2 includes the
time to solve the scaled problem and parallel overhead in a
fault free situation.

TN (w′) = Tsolve + TO(N) (2)
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Here TO is the parallel overhead and is a function of
N . Note the fixed time between the original and scaled
workloads when the parallel overhead is not considered.
The scaled workload w′ has the same characteristics as the
original workload w, but requires N× the computation. In
the CG case, the size of the matrix A scales accordingly to
keep a constant amount of work per process.

In faulty environments with a failure rate of λ, resilience
incurs extra cost. We focus on recovery and assume fault
detection is performed by other techniques [10] and the
detection overhead is factored into the base running time
for the solver. Therefore we extend Equation 2:

TN (w′) = Tsolve + TO(N) + Tres(w
′, N, λ) (3)

where Tres is the total time overhead for resilience,
including time to checkpoint, recompute lost progress, re-
construct an approximate state, and restart the external en-
vironments.
Power consumption for the original workload P1(w):
the amount of power consumed by workload w during a
sequential execution. Conceptually, the power consumption
is summed over all computer components. For simplicity,
we only account for the CPU core’s power for two reasons:
(1) cores are the dominant power consumer; (2) their power
varies the most across resilience techniques.
Power consumption for the scaled workload PN (w′):
the amount of power consumed by N processor cores
when executing the scaled workload w′. For the fixed time
workload scaling, each processor core maintains the same
computational intensity and thus power. Therefore,

PN (w′) = N × P1(w) (4)

In a fault free situation, the application execution con-
sists of useful problem progress periods and parallel over-
head time such as communication and synchronization.
Since we are more interested in the impacts of resilience,
we assume that the power profile of CG is the same during
progress phases and parallel overhead.

In faulty environments, the power profiles may alter be-
tween disjoint normal execution phases and recovery phases,
and overlapped execution-recovery phases.

PN (w′) =

⎧⎪⎨⎪⎩
N × P1(w) execution phase

PN,res recovery phase

N × P1(w) + PN,res overlapped phase
(5)

The power consumption during the recovery phase
PN,res is discussed and quantified for each resilience tech-
nology in Section 3.2 and Section 5.
Energy-to-solution for the original workload E1(w): the
total amount of energy to complete the workload w on a
single core in a fault-free situation. It is the product of power
and time — i.e.,

E1(w) = P1(w) · T1(w) (6)

Energy-to-solution for the scaled workload EN (w′): the
total amount of energy to complete the scaled workload w′
with N processor cores.

In a fault-free situation, it accounts for the energy to
solve the problem and the parallel overhead.

EN (w′) = N · P1(w) ·
(
Tsolve + TO(N)

)
(7)

In faulty environments with a failure rate of λ, additional
energy is consumed to support resilience (see Section 3.2).

EN (w′) =PN (w′)avg ·
(
Tsolve + TO(N) + Tres(w

′, N, λ)
)

(8)

3.2. Specific Models for Recovery Schemes

We analyze the recovery cost of a hard or a soft fault,
which causes data loss or corruption on a single process pi.
Recovery is needed for the computational environment, lost
static data, and lost dynamic data [28]. We assume that the
computational environment and the lost static data including
A;,pi and bpi are recovered immediately as in [2]. Let xk be
the solution vector when a fault occurs in the kth iteration
of CG. Thus, the challenge is to recover the lost dynamic
data — i.e., xk

pi
on the failed process pi — see Figure 2(b).

We discuss several recovery schemes grouped into
Checkpoint/Restart (CR), Redundancy (RD) and Forward
Recovery (FW) as shown in Table 2. CR and FW include
multiple variations. The general models are applicable to
all these schemes. However, Tres(w

′, N, λ) and PN,res are
further refined for each resilience technique.

TABLE 2. RECOVERY SCHEMES UNDER STUDY

Type Scheme Description

CR
CR-D Checkpoint to/rollback from disk
CR-M Checkpoint to/rollback from memory

RD DMR Double modular redundancy

FW

F0 Assign 0 to xk
pi

FI Assign initial guess to xk
pi

LI linearly interpolate lost xk
pi

LSI Interpolate lost xk
pi

with least squares

Checkpoint/Restart. The iterative solution vector x is
checkpointed to storage periodically at certain iterations and
recovered from the most recent correct checkpoint after
a fault. Let xCm be the most recent checkpointing of x
performed after the mth iteration when a fault occurs in
the kth (k ≥ m) iteration, the resilience cost Tres(w

′, N, λ)
with CR includes time to checkpoint the solution vector x
and the time lost to compute from xCm to xk.

Tres(w
′, N, λ) = Tchkpt(w

′, N, λ) + Tlost(w
′, N, λ) (9)

where Tchkpt is the total time spent checkpointing, and Tlost

is the total time spent re-computing to arrive at the state
before the failure/error occurred.
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Tchkpt is the product of per checkpointing cost tC and
the number of checkpoints taken. The latter is derived from
the total execution time and checkpointing interval IC , i.e.,

Tchkpt = tC · TN (w′)
IC

(10)

tC differs with the checkpoint storage — e.g. local-
memory(cheap) or remote disk(expensive). The optimal
checkpointing interval, IC , is a function of failure rate
and commonly approximated with Young’s and Daly’s ap-
proaches [41, 16].

Tlost is dependent on the failure rate and the average
amount of recomputation time tlost. The latter is approxi-
mated as a half of the checkpointing interval. For a failure
rate λ, Tlost is derived as

Tlost = tlost · λ · TN (w′) ≈ IC
2

· λ · TN (w′) (11)

In general, CPUs are not highly utilized during check-
pointing and thus consume less power than in computation
phase. That is, PN,res < N · P1(w). For cases when
checkpointing takes a long time, transitioning the CPU’s
power to a lower power state saves power.

Redundancy. A dual-modular redundancy (DMR) re-
silience scheme requires 2N CPUs to support redundant
computation. Assuming an unlimited number of CPUs with-
out a power budget and two independent sets, the recovery
time for xk from the redundant replica after a fault is
negligible. Nevertheless, the resilience phases are always
concurrent with the normal program progress phases. Re-
silience causes additional power PN,res for the duration of
the application by requiring double the power.

PN,res = N · P1(w) (12)

Forward Recovery. Forward recovery approximates
lost data with simple assignments or reconstruction tech-
niques. A more precise approximation of xk takes more
time/energy to construct but takes fewer extra iterations to
converge to the final solution.

The time cost for FW resilience is modeled as:

Tres(w
′, N, λ) = Tconst + Textra (13)

Where Tconst captures the cost of reconstructing an ap-
proximation for xk, and Textra captures the cost of extra
iterations required to converge. The former is the product
of the reconstruction count and the cost per reconstruction
tconst.

Tconst = λ · TN (w′) · tconst (14)

Constructing an approximation of the lost data may or
may not involve all CPUs depending on the recovering

algorithm. For example, Ñ = 1 during reconstruction for the

FW methods under study. Given Ñ ≤ N processes actively

constructing the approximation and N − Ñ CPUs idle, the
power during construction is less than that during normal
execution.

{
PN,const = Ñ · P1(w) + (N − Ñ) · Pidle, if constructing

Pextra = N · P1(w), if extra iter.
(15)

here Pidle is the power consumption when the core is idle.
The energy cost for resilience is the sum over the

reconstruction and extra iterations, i.e.,

EN,res = PN,const · Tconst +N · P1(w) · Textra (16)

We investigate four FW schemes: filling xk
pi

with all
zeros (F0) and the initial guess (FI), linear interpolation
(LI) [28] and least squares interpolation (LSI) [2]. These
schemes have different reconstruction costs and accuracy.
F0 and FI are assignment based and thus do not incur
a construction cost — i.e., Tconst = 0. However, they
incur large Textra to converge. On the contrary, LI and
LSI are interpolation based and take time to construct more
accurate approximations, but require fewer extra iterations to
converge. The specific construction cost and extra iteration
cost are determined by the workload and matrix properties.

Let xLI
pi

be the approximation of xk
pi

for the linear sys-
tem solved by CG, LI constructs it with linear interpolation:{

xLI
pi

= A−1
pi,pi

(bpi −
∑

j �=i Api,pjx
k
pj
) for j = i

xLI
pj

= xk
pj

for j �= i
(17)

LSI uses a more complex interpolation scheme and
provides a more accurate approximation than LI. Let xLSI

pi

be the interpolation of xk
pi

, LSI approximates it with:⎧⎨⎩xLSI
pi

= min
xpi

‖b− ∑
j �=i

A;,pj
xk
pj

−A;,pi
xpi

‖ for j = i

xLSI
pj

= xk
pj

for j �= i
(18)

The analytical modeling distinguishes between different
resilience schemes. Corresponding model parameters are
derived from experimental data in the following section.

4. Minimizing Recovery Cost

We present several strategies to reduce the overhead for
the LI and LSI recovery schemes. Specifically, we introduce
algorithms to efficiently construct the approximations and
further use DVFS to reduce power during construction.

4.1. Localized Construction Algorithms

LI Optimization: xLI
pi

in Equation 17 requires solving a

linear system. Let y = bpi −
∑

j �=i Api,pjx
k
pj

. The failed

process pi uses linear interpolation to reconstruct xk
pi

via
solving the following equation:

Api,pix
LI
pi

= y (19)

where all entries of Api,pi are static and are recovered from
local storage on process pi, and y is calculated using entries
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of x from all the other processes. After a communication
step, this problem is solved locally on process pi.

Previous work [2] uses a sequential LU factorization of
Api,pi

to get the exact solution of xLI
pi

. LU factorization
requires a large amount of memory [24], and incurs high
time and energy costs. A possible faster alternative is to par-
allelize LU factorization. However, parallelization increases
communication time and can increase energy consumption
by using all the cores.

We propose a more efficient approach to solve Equa-
tion 19. The key idea is to derive an approximation of xLI

pi

locally on process pi. The exact solution is not necessary
because itself is an approximate of the lost data xk

pi
. Sequen-

tial execution eliminates communications and allows other
processes to enter sleep sates for power savings.
LSI Optimization: xLSI

pi
in Equation 18 solves a least-

squares linear system. Let β = b−∑
j �=i A;,pj

xk
pj

, it solves:

(AT
;,pi

A;,pi
)xLSI

pi
= AT

;,pi
β (20)

here A;,pi is a parallel matrix distributed among all pro-
cesses. Previous work [2] uses a parallel sparse QR factor-
ization of A;,pi to get the exact solution of xLSI

pi
. It involves

a high volume of communication depending on the sparsity
pattern of A.

We use CG to locally solve for xLSI
pi

on process pi.
We first transform the problem to enable local computation.
Given the SPD matrix A, then A;,pi

= AT
pi,;. Thus, we

transform Equation 20 as follows:

(Api,;A
T
pi,;)x

LSI
pi

= Api,;β (21)

Figure 4. Time-to-solution with the CG-based construction algorithm for LI
and LSI schemes on Matrix Kuu with 5 faults. LI/LSI (CG): CG-based
LI/LSI forward recovery; LI (LU): LU-based LI forward recovery; LSI
(QR): QR-based LSI forward recovery. A smaller y-axis value indicates a
higher accuracy.

Figure 4 shows that using CG has a shorter time-to-
solution than previous solutions for both LI and LSI. The
improvement is 4-15%, depending on the tolerance. By
computing a less accurate approximation, CG-based LI and
LSI require less recovery time and total time than LU-based
LI and QR-based LSI.

4.2. Power Reduction

Besides reducing the time-to-solution, using CG for the
LI and LSI schemes provides power saving opportunities

during the reconstruction phases. Since only pi constructs
the lost data of xi, cores running other processes are able to
transition to low speed states to reduce power consumption
without impacting application performance.

In this work, we exploit DVFS commonly available on
HPC CPUs for power reduction [29]. We bind processes to
cores and adjust the core speed during the reconstruction
phases for the LI and LSI schemes. Process-core binding
is a common resource management technique and typically
a one-to-one mapping is adopted for HPC applications.
The core with process pi always runs at the highest CPU
frequency, while the other cores scale down to the lowest
CPU frequency before reconstruction and scale up to the
highest CPU frequency when reconstruction finishes.

Employting this power optimization techniques reduces
power consumption during reconstructions by 40% with the
power-aware LI scheme on a 24-core node (detailed results
in Section 5.3). During reconstruction, 23 CPUs are idle,
and the node consumes 0.75× of the power of normal
execution phases without DVFS scheduling. When we apply
DVFS scheduling, the node power drops to 0.45×. While
not shown, the power-aware LSI scheme achieves similar
power savings.

5. Results

This section evaluates the resilience and energy effi-
ciency of different recovery schemes, and answers the re-
search questions raised in the introduction section. We first
present our experimental setup and benchmarks. We then
evaluate the resilience of recovery mechanisms, and lastly
assess their time and energy costs.

5.1. Experiment Setup

The experiment platform consists of 8 dual-socket nodes.
Each node has two 12-core Xeon(R) E5-2670v3 processors
and 128 GB DDR4 DRAM evenly distributed between the
two NUMA sockets. DVFS is controlled using the CPUfreq
interface. Each core can independently transition from 1.2
GHz to 2.3 GHz with a step of 0.1 GHz. Each core supports
2-way hyperthreading, which is only enabled for resilience
evaluation and disabled for power and energy related exper-
iments.

Data measurement is through benchmarks and utilities
available on the system. Specifically, execution time is
collected from benchmark reports, and processor power
is collected with the Intel Running Average Power Limit
(RAPL) interface.

We focus on symmetric positive definite (SPD) matri-
ces with various sizes, densities, and convergence speeds,
as shown in Table 3. These matrices are from the Suite
Sparse Matrix Collection [1]. Each matrix is distributed
among all parallel MPI processes in our experiment. CG
and all resilience schemes are implemented from routines
in RAPtor [9].
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Figure 5. Iterations to convergence for different matrices using 256 processes with 10 faults. Each matrix uses its own normalization base, which is the
fault free case.

TABLE 3. PROPERTIES FOR MATRICES TAKEN FROM SUITE SPARSE

MATRIX COLLECTION.

Name #Rows #NNZ/row Problem Kind #Iters

bcsstk06 420 19 structural 4,476
msc01050 1,050 25 structural 35,765

ex10hs 2,548 22 CFD 3,217
bcsstk16 4,884 59 structural 553

ex15 6,867 17 CFD 1,074
Kuu 7,102 24 structural 849

t2dahe 11,445 15 model reduction 82,098
crystm02 13,965 23 materials 1,154

wathen100 30,401 16 random 2D/3D 355
cvxbqp1 50,000 7 optimization 11,863
Andrews 60,000 13 graphics 216

nd24k 72,000 399 2D/3D 10,019
x104 108,384 80 structure 96,704

5-point stencil 640,000 5 structure 3162

TABLE 4. NORMALIZED ITERATIONS TO CONVERGE UNDER

VARIOUS PARALLEL SETTINGS FOR MATRIX CRYSTM02.

#p FF RD F0 FI LI LSI CR

4 1 1 2.17 2.16 1.44 1.44 1.55
16 1 1 2.16 2.15 1.44 1.44 1.56
64 1 1 2.23 2.23 1.44 1.44 1.55
256 1 1 2.23 2.22 1.44 1.44 1.55

5.2. Resilience of Recovery Mechanisms

What is the resilience of various recovery mechanisms?
To answer this question, we investigate how resilient each
recovery mechanism is, how it performs for different prob-
lems, and how it reacts to multiple faults.

The work evaluates recovery schemes for CG, but our
results are applicable to other iterative solvers. CG itera-
tively refines an initial guess at each iteration. The algorithm
terminates when the iterative solution is deemed accurate
enough based on a small relative residual or when a fixed
number of iterations is reached. In the presence of faults,
the number of iterations to reach the same accuracy can
increase. A recovery mechanism that takes fewer iterations
to reach a desired accuracy is more resilient.

Note the resilience analyses in this subsection only
accounts for iterations. Section 5.3 extends this discussion
to cover both time, energy, and power.

In the following experiments, 10 faults are inserted

evenly over the iterations required by the fault free exe-
cution (no more faults inserted after the fault free execution
converges). The solver tolerance is set at 1e−12. Since the
number of iterations is the same regardless of where the
checkpoint is stored, we do not delineate between mem-
ory and disk checkpointing in this subsection. Instead, we
present results of disk checkpointing with a frequency of
every 100 iterations.

Resilience vs. Parallelization. We first examine how
parallel computing affects resilience for a given recovery
mechanism. We use the crystm02 matrix as a case study,
and solve a fixed-size problem with different numbers of
MPI precesses on our cluster.

Table 4 shows the number of iterations to converge for
each recovery mechanism that is normalized to the fault-
free execution. Each mechanism has a constant number
of iterations relative to process counts. We only present
experimental results for a given problem and process count,
because the choice of recovery scheme and process count
does not change the fixed size problem.

We also observe that different schemes take different
numbers of iterations to converge. RD performs the same
as the fault-free execution. F0 and FI take the highest
number of iterations to converge due to their inaccurate data
reconstruction method. LI and LSI outperform F0 and FI
by leveraging part of the intermediate computed results to
create more accurate data reconstructions. CR rolls back to
a previously saved state and takes more iterations than LI
and LSI with the preset checkpointing frequency.

Mechanisms vs. Problems. We examine how the re-
covery mechanisms perform on different matrices. Figure 5
presents the number of iterations normalized to the fault-free
performance. Overall, F0 and FI take the highest number
of iterations (2.5× on average) to converge. RD takes the
lowest number of iterations. LI, LSI, and CR perform similar
to F0 and FI for matrices such as bcsstk06 and ex10hs, but
perform much better for other matrices such as ex15 and
t2dahe. This is due to the fact that LI and LSI construct less
accurate solutions for the matrices with an irregular struc-
ture. CR requires more iterations than LI and LSI because it
rolls back to a prior iteration state, and its overhead is due
to the recomputation of the lost iterations. LI and LSI do
not require as many iterations because of a more accurate
reconstruction of x.
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Figure 6. residual∼#iteration relation and correction under various recov-
ery mechanisms. FF and RD are overlapped. F0 and FI are overlapped.

Number of Iterations to Converging and Correction.
Recovery mechanisms takes a number of extra iterations
due to faults/failures. Figure 6 shows the variation in the
residual history when solving two different linear systems
with various number of faults and recovery schemes.

With a single fault injected at the 200th iteration, Fig-
ure 6(a), the residual increases for all recovery schemes
except for RD, which overlaps with the FF case. This is
due to the fact that RD recovery the exact solution. Different
recovery schemes result in a different change in the residual.
F0 and FI (overlapped) has the largest increase, while LI and
LSI (overlapped) get a minimal increase by constructing a
more accurate approximation. Note that CR has a noticeable
increase by rolling back to a previously checkpointed result.
Figure 6(b) shows an example with 10 faults for a 5-
point stencil matrix. LI and CR take fewer iterations to
converge. In CG, reconstructing x forces reconstruction of
other renew other variables in each iteration, including CR.
In this example, their constructed solution makes the path
to converge shorter.

5.3. Time, Power, and Energy Costs of Resilience

The previous analysis only captures extra iterations re-
quired by resilience. Iterations do not tell the entire time
cost. In this section, we analyze the time, power, and energy
costs of resilience, and begin with power consumption. From
this subsection, MTBF is set as the same of that in Section
5.2. The checkpointing frequency of CR is computed via
Young’s formula [41].

What is the power requirement of resilience and how
does power management help? Here we focus on the LI
and LSI mechanisms and how they benefit from power
management. We limit our discussion on power management
for checkpointing as it has been previously investigated [31].

Figure 7(a) illustrates how DVFS-based power manage-
ment changes the power profiles of matrix nd24k on a single
node with the LI scheme. We compare our optimization de-
noted LI-DVFS with the OS-level power management. The
OS-level management uses the “ondemand” governor and
scales up CPU speed if the CPU utilization is high or scales
the frequency down if low. LI-DVFS uses the “userspace”
governor. It runs all CPUs at 2.3 GHz in computation phase,
and runs all but one CPU at 1.2 GHz during the construction
phase. The one CPU that actively reconstructs an estimation

TABLE 5. TIME AND ENERGY COST OF RESILIENCE OF VARIOUS

MECHANISMS. FF IS THE NORMALIZATION BASE.

Time Power Energy

FF 1 1 1
RD 1 2 2

LI-DVFS 2.12 0.84 1.78
LSI-DVFS 2.35 0.81 1.90

CR-M 1.83 0.98 1.79
CR-D 2.42 0.93 2.25

of lost data runs at 2.3 GHz. LI-DVFS reduces power by
39% during the construction phase without performance
degradation. While not shown, LSI-DVFS achieves similar
power reduction.

(a) Power reduction for nd24k (b) Energy savings for 14 matrices

Figure 7. Power reduction and energy savings with LI-DVFS and LSI-
DVFS. (a):Power profile of nd24k with simple LI and LI-DVFS; (b)
average time, power, and energy for 14 matrices included in Figure 5.
T , E, and P are normalized based on the fault-free case. Eres / Esolve

is the ratio of energy cost for resilience and for fault-free case.

Figure 7(b) presents the overall performance, power, and
energy impact for the 14 matrices presented in Figure 5. LI-
DVFS and LSI-DVFS maintain the same performance, and
reduce energy by 11% and 16% respectively. With these
optimizations, more energy is allocated to problem solving
rather than resilience, as demonstrated by Eres / Esolve.

What are the time and energy costs of resilience? Since
LI-DVFS and LSI-DVFS consume less power than LI and
LSI, we only include the former in discussions henceforth.
We implement both CR with memory (CR-M) and CR with
disk (CR-D) to give a range of checkpointing/restart cost.
We apply various recovery mechanisms to the benchmark
matrices under study, and analyze the time, energy, and
power cost of resilience.

Table 5 presents the normalized time, power, and energy
costs of resilience for various schemes. The values are
averaged over all the matrices under study, and the power
consumption is averaged over the entire execution including
problem solving, parallel overhead, and recovery. Overall,
LI-DVFS incurs the least energy overhead, and CR-M incurs
the least time overhead except for RD. In contrast, CR-D
takes the most time and energy. RD always consumes the
most power. We assume that the disk is shared between
multiple users and consumes a constant amount of power
regardless of configuration.

Which recovery mechanism is the most efficient for a
given workload? The solution to this question lies in the
workload properties and fault situation. Here, we keep the
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Figure 8. Normalized time, energy and average CPU power for three
matrices under various recovery mechanisms. x—matrix x104; n—matrix
nd24k; and c—matrix cvxbpq1. MTBF is 0.1 hour and MPI count is 24.

TABLE 6. VALIDATION OF MODEL FOR MATRIX X104 NORMALIZED

TO FAULT FREE (FF)

Model Experiment
Scheme Tres P Eres Tres P Eres

FF 0 1 0 0 1 0
RD 0 2 1 0 2 1

LI-DVFS 0.79 0.92 0.73 0.61 0.86 0.52
LSI-DVFS 0.75 0.91 0.68 0.58 0.83 0.48

CR-M 0.42 0.98 0.41 0.38 1 0.38
CR-D 0.92 0.96 0.88 0.89 0.97 0.86

same fault situation and perform experiments on the various
matrices.

Figure 8 show that among the schemes, the best op-
tion varies depending on what constraint to optimize: time,
power, or energy. LI and LSI need the least amount of power
and energy if reconstruction time is relatively short, and CR-
M often consumes the least amount of energy. The energy-
efficiency of these resilience schemes is also comprehen-
sively determined by several matrix properties. For matrices
like x104 with an irregular pattern, CR-M is most efficient
while FW costs more time and energy in reconstruction. For
matrices like nd24k with more non-zeros per row, RD costs
the least time and energy, and both CR-M and FW cost more
due to less accurate solution reconstruction. For matrices
like cvxbqp1, FW is most efficient by reconstructing a more
accurate solution and requiring the fewest extra iterations.

We evaluate the accuracy of our models by comparing
the model’s estimated costs and measured cost for multiple
experiments. Table 6 shows the resilience overhead for ma-
trix x104 normalized to FF. FF and RD uses the same data in
the models and in the experiments. The resilience overhead
of other recovery schemes is computed via corresponding
models. For LI-DVFS and LSI-DVFS, the unit time for
reconstruction tconst is measured. For CR-M and CR-D,
unit time for checkpointing tC is measured. For LI-DVFS
and LSI-DVFS, our models over estimate Tres and Eres

as higher extra time due to reconstruction is predicted.
As our main goal is to provide comparison and relative
order between the schemes under study, such estimation is
acceptable. We will refine the model’s parameterizations in
the future to improve the model’s accuracy.

6. Cost Projection for Large Systems

Section 5 shows how recovery schemes perform in a 8-
node cluster. This section uses our models and experimental
data to project how the schemes work on large systems.

How does the resilience cost scale with system size and
a decreasing MTBF? To answer this question, we need to
project Tres, Eres, and P from our experimental platform
to a very large system.

We compute overhead for a scaled workload via the
models from Section 3. First, we project T for a fault-free
baseline, where T = Tsolve+TO. In our measured data, par-
allel overhead TO roughly equals the communication over-
head. In each CG iteration, communication incurs to transfer
data for sparse matrix-vector multiplications (SpMV) and
vector-inner products. We use the average communication
time cost of a SpMV from experimental data from a large
system [8], where the SpMV’s weak scaling performance
is studied for matrices with 50K nnz per processor ranging
from 1K to 60K processes. The time cost of a vector-inner
product is linear with system size [40]. We project TO with
the average communication time cost of SpMV and vector-
inner product.

We project resilience overheads for RD, CR-D, CR-M,
and the best case of FW from our experimental data on a
large system. We project Tres to the large system based on
our models in Section 3. tC of CR-D increases linearly as
system size increases in our experimental data. We assume it
continues to increase linearly in the large system. tC of CR-
M is stable, we assume this continues in the large system.
tconst of FW increases linearly as system size increases in
our experimental data. We assume that this trend continues
in large systems. For textra of FW, we adopt an average
normalized overhead based on the fault-free case. We adopt
this average data to project FW in the large system. We
project P based on models, where Pidle = 0.45 · P1(w)
for FW and Pidle = 0.4 · P1(w) for CR-D. Eres is then
calculated by all terms in Tres and P . The constants are
derived from results in Section 5.

Figure 9 presents the projected resilience overheads
for different resilience schemes. We scale the matrices to
maintain 50K nnz per process, and assume a constant per-
processor MTBF of 6K hours and a linearly decreasing
system MTBF. Tres, Eres and P are all normalized to the
fault-free case for each system size. Resilience schemes have
various patterns. Tres and Eres show similar trends. As
system size increases and MTBF decreases, Tres and Eres

of RD keeps the same as the fault-free case. Tres and Eres of
FW increases roughly linearly because tconst is linear and
tlost per fault is fixed. Tres and Eres of CR-D increases
faster because of tC and more frequent checkpointing. Tres

and Eres of CR-M decreases because of its negligible tC .
P of FW and CR-D drops as the time cost in recovery or
reconstruction becomes dominant.

As system size increases and MTBF decreases, Tres

and Eres for FW and CR-D become larger than time and
energy required for the fault-free case, and dominate the
total time-to-solution and energy-to-solution. Moreover, if
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(a) Normalized resilience overhead for time (b) Normalized resilience overhead for energy (c) Normalized average power

Figure 9. Normalized resilience overhead of weak scaling for 50,000 nnz per process with a decreasing MTBF.

MTBF continues to decrease, workload progress can pos-
sibly halt. while CR-M performs best in the projection, it
is not practical to common fault situations with lost data in
memory.

Current resilience schemes do not meet the requirements
of future larger and more faulty systems. We need more
optimizations to further reduce overhead of these resilience
schemes, especially the time and energy costs in checkpoint-
ing, recovery or reconstruction phases. Decreasing them can
greatly improve the full application’s time and energy.

7. Related Work

In large-scale systems, fault tolerance mechanisms in-
volves checkpointing /restart (CR) from a parallel file sys-
tem [38]. In related research for CR, Berkeley Lab Check-
point Restart (BLCR) [23] are system-level CR with disks.
Scalable CR (SCR) [33] uses multi-level CR and CR at the
system software layer. Disadvantages of classical CR strat-
egy exist as unacceptable time to checkpoint, and the global
restart even if only one process fails. Modular redundancy
has been developed significantly in recent years, which focus
on thread-level [22], process-level [36], and MPI imple-
mentations [21]. Both Triple-Modular Redundancy (TMR)
and Dual-Modular Redundancy (DMR) induces significant
overhead. In order to deal with these challenges in CR and
RD, Algorithm-Based Fault Tolerance (ABFT) is an area of
active research.

ABFT techniques detect and recover from errors in
linear algebra operations by the use of checksums [25].
Significant research has been proposed for different ABFT
schemes to address soft faults [12, 17] or hard faults [3, 13,
27] or both [39, 14, 15]. In latest research of ABFT, Huber
et al. [26] combines domain partitioning with geometric
multigrid methods to obtain resilient solvers based on the
redundant storage of ghost values. Scholl et al. [34] pro-
poses a fault tolerance approach to implicitly provide error
locations and to enable partial recomputations for erroneous
outputs after error detection. These ABFT algorithms are
often combined with a rollback-recovery mechanism, which
brings an overhead for a fault-free situation. In this paper,
we evaluate forward-recovery schemes in [2] to avoid an
overhead when no fault occurs.

Energy-efficiency of resilience mechanisms has been
one of major challenges in recent years. Diouri et al. [20]
first present a study that evaluates checkpointing and other
existing fault tolerance protocols from energy consideration.
They conclude that in clusters, the difference of energy
consumption mainly depends on the execution time be-
cause operations have close power consumption in clusters.
Meneses et al.’s work [31] presents a way to understand
how fault tolerance and energy consumption interplay for
three recovery schemes. Their paper shows that parallel
recovery consumes less energy because it reduces the restart
time. Aupy et al. [6] explores energy optimization in the
checkpointing period. Scholl et al. [35] adapts the underly-
ing precision in Preconditioned Conjugate Gradient (PCG)
solvers on approximate computing hardware to gain energy
efficiency. Instead of only looking into execution time, in
this paper, we investigate energy optimization of reducing
the communication overhead during recover/restart phase.

8. Conclusion

This paper proposes a novel approach to analyze and
optimize the cost of resilience techniques for iterative linear
solvers. We present a set of models to better understand
resilience and energy overhead of applications in a faulty
environment, and we perform power optimizations to re-
duce the overhead of forward recovery. Our experiments
show that our optimized forward-recovery algorithm signif-
icantly reduces the resilience overhead and provides insights
for selecting recovery schemes for certain workloads. Our
projection result reveals trends of resilience cost on large
systems and provides direction for optimization of resilience
schemes. In future work, we plan to extend our models to
capture more resilience mechanisms and study the perfor-
mance and energy optimization for more applications.
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recovery strategies in high performance computing. Parallel Com-
puting, 40(9):536–547, 2014.

[32] B. Mills, R. E. Grant, K. B. Ferreira, and R. Riesen. Evaluating energy
savings for checkpoint/restart. In Proceedings of the 1st International
Workshop on Energy Efficient Supercomputing, page 6. ACM, 2013.

[33] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design,
modeling, and evaluation of a scalable multi-level checkpointing sys-
tem. In Proceedings of the 2010 ACM/IEEE international conference
for high performance computing, networking, storage and analysis,
pages 1–11. IEEE Computer Society, 2010.
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